前言
JUC包下大量使用了CAS,工作和面试中也经常遇到CAS,包括说到乐观锁,也不可避免的想起CAS,那CAS究竟是什么?
概念
说到CAS,基本上都会想到乐观锁、AtomicInteger、Unsafe …
当然也有可能啥也没想到!
不管你们怎么想, 我第一印象是乐观锁,毕竟做交易更新交易状态经常用到乐观锁,就自然想到这个SQL:
1 2 3
| update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0;
|
其实就是 set和where里面都携带order_status。
那什么是CAS?
CAS就是Compare-and-Swap
,即比较并替换,在并发算法时常用,并且在JUC(java.util.concurrent)包下很多类都使用了CAS。
非常常见的问题就是多线程操作i++问题。一般解决办法就是添加 synchronized 关键字修饰,当然也可以使用 AtomicInteger 代码举例如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
| public class CasTest {
private static final CountDownLatch LATCH = new CountDownLatch(10);
private static int NUM_I = 0; private static volatile int NUM_J = 0; private static final AtomicInteger NUM_K = new AtomicInteger(0);
public static void main(String[] args) throws InterruptedException {
ExecutorService threadPool = Executors.newFixedThreadPool(10); for (int i = 0; i < 10; i++) {
threadPool.execute(new Runnable() { public void run() { for (int j = 0; j < 10000; j++) { NUM_I++; NUM_J++; NUM_K.incrementAndGet(); } LATCH.countDown(); } }); } LATCH.await();
System.out.println("NUM_I = " + NUM_I); System.out.println("NUM_J = " + NUM_J); System.out.println("NUM_K = " + NUM_K.get()); threadPool.shutdown(); }
}
|
下面就从AtomicInteger
开始了解CAS。
源码分析
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| public class AtomicInteger extends Number implements java.io.Serializable { private static final long serialVersionUID = 6214790243416807050L;
private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset;
static { try { valueOffset = unsafe.objectFieldOffset (AtomicInteger.class.getDeclaredField("value")); } catch (Exception ex) { throw new Error(ex); } }
private volatile int value;
public final int incrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, 1) + 1; } public final int decrementAndGet() { return unsafe.getAndAddInt(this, valueOffset, -1) - 1; }
}
|
可以看出里面使用了Unsafe
类下的getAndAddInt
方法,Unsafe
类很多方法是本地(native)方法,主要是硬件级别的原子操作
。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
|
public final int getAndAddInt(Object var1, long var2, int var4) { int var5; do { var5 = this.getIntVolatile(var1, var2); } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));
return var5; }
public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);
|
至于 compareAndSwapInt 的分析就忽略了。
看完代码过程其实就是:
- 比较var1的值是否为var4,是的话将var1更新为var5。
- 如果不是的话就一直循环,直到var1是var4。
问题
- 这要是一直获取不到,岂不是一直循环。线程多的情况下,会自旋很长时间,导致浪费资源。
- 你更新了, 我又给你更新回去了,你也不知道。ABA问题!比如像这样,A想更新值为a,还未抢到资源,这时候B进行了更新,将对象更新为了b,然后又马上更新回了a, 这时候A是什么都不知道的。
以乐观锁举例:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0;
update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0;
update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0;
|
解决办法可以添加version进行版本号控制。
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0 and version = 0;
update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0 and version = 1;
update trans_order set order_status = 1 where order_no = 'xxxxxxxxxxx' and order_status = 0 and version = 0;
|
代码中可以看 AtomicStampedReference
类:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
|
public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { Pair<V> current = pair; return expectedReference == current.reference && expectedStamp == current.stamp && ((newReference == current.reference && newStamp == current.stamp) || casPair(current, Pair.of(newReference, newStamp))); }
|
其实就是额外增加一个标志(stamp
)来防止ABA的问题, 类似乐观锁的version。